Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______ / \ ___5__ ___1__ / \ / \ 6 _2 0 8 / \ 7 4For example, the lowest common ancestor (LCA) of nodes
5and1is3. Another example is LCA of nodes5and4is5, since a node can be a descendant of itself according to the LCA definition.
TreeNode * LCA(TreeNode * root, TreeNode * p, TreeNode * q)
- if root is null, return null
- if root == p || root == q, return root // find the target node
- else:
- left = LCA(root->left, p, q)
- right = LCA(root->right, p, q)
- if(left && right) return root; //lowest ancestor
- else return left == nullptr? right: left; //return the non null child
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
//what if a node does not exist in tree
//what if p == nullptr || q == nullptr
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == nullptr || p == nullptr || q == nullptr){
return nullptr;
}
else if(root == p || root == q){
return root;
}
else{
//search deeper
TreeNode * left = lowestCommonAncestor(root->left, p, q);
TreeNode * right = lowestCommonAncestor(root->right, p, q);
if((left && right)){
//lowest ancestor
return root;
}
else{
//below ancestor or above ancestor
return left == nullptr? right: left;
}
}
}
};