LRU Cache
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations:
getandset.
get(key)– Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value)– Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.tag: data structure
10/8/2015 update
Use a hash map and linked list to implement an algorithm with O(1) time complexity in both set() and get().
With a hash map, get is o(1) and set is o(1) is capacity is infinite.
With a linked list, set is o(1)(no duplicates) and get is o(n).
So we need to combine these two data structures.
hash map stores key-TreeNode pair
class Node{
public:
int key;
int val;
Node * next, * prev;
Node(int k, int v):key(k), val(v), next(nullptr), prev(nullptr){}
};
class LRUCache{
public:
Node * head, * tail;//head is the most recently used node. Tail is the least recently used.
int size;
int capacity;
unordered_map<int, Node *> map;
LRUCache(int capacity) {
this->size = 0;
this->capacity = capacity;
this->head = this->tail = nullptr;
map.clear();
}
int get(int key) {
Node * node;
if(map.find(key) == map.end()){
return -1;
}
else{
//find in cache
node = map[key];
if(size == 1 || node == head){
return node->val;
}
//size is more than 1, and node is not head
node->prev->next = node->next;
if(node == tail){
//move tail
tail = tail->prev;
tail->next = nullptr;
}
else{
node->next->prev = node->prev;
}
//move node to head
node->next = head;
head->prev = node;
node->prev = nullptr;
head = node;
return head->val;
}
}
void set(int key, int value) {
if(capacity == 0) return ;
if(map.find(key) != map.end()){
//found in list
map[key]->val = value;
get(key);
}
else{
//not found in key
//connect it to head
Node * node = new Node(key, value);
map[key] = node;
if(size == 0){
head = tail = node;
}
else{
node->next = head;
head->prev = node;
head = node;
}
if(size == capacity){
//delete tail
map.erase(tail->key);
tail = tail->prev;
delete tail->next;
tail->next = nullptr;
}
else{
size++;
}
}
}
};
看到这题,想起计算机体系结构课上,老师讲过的全相连(full-associate),组相连(set-associate),直接映射(direct map)。此题涉及了LRU,肯定不是直接映射或组相连。只能是全相连。
先暴力尝试,get和set都是O(n)。时间超界。
版本一
class node{
public:
int key;
int val;
int n;
node(int k, int v, int n): key(k), val(v), n(n) {}
};
class LRUCache{
public:
unsigned int count;//overflow bug
int size;
int capacity;
vector<node *> cache;
LRUCache(int capacity) {
this->capacity = capacity;
this->size = 0;
this->count = 0;
}
int get(int key) {//O(n)
vector<node*>::iterator it;
for(it = cache.begin(); it != cache.end(); it++){
if ((*it)->key == key){
(*it)->n = count++;
return (*it)->val;
}
}
return -1;
}
void set(int key, int value) {//O(n)
vector<node*>::iterator it;
vector<node*>::iterator minIt = cache.begin();
for(it = cache.begin(); it != cache.end(); it++){
if((*it)->key == key){
(*it)->val = value;
(*it)->n = count++;
return;
}
else{
if((*minIt)->n > (*it)->n){
minIt = it;
}
}
}
if(size < capacity){
node * p = new node(key, value, count++);
size++;
cache.push_back(p);
}
else{//full
(*minIt)->val = value;
(*minIt)->key = key;
(*minIt)->n = count++;
}
}
};
尝试优化中。
版本二,参照了这个博客:http://www.cnblogs.com/dolphin0520/p/3741519.html
用一个链表和哈希表,实现了get和set的o(1)复杂度。
链表内的元素按照访问时间由新到旧排列。
新的在表头,最旧的在末尾。当链表满了时,删掉末尾节点,插入新数据。
当其中的某个节点被访问时,取出该节点,放到链表头。
哈希表里存着key-node指针对,方便在o(1)时间内找到节点。
我的方案里重写了底层的链表接口。也可以直接用STL里的list,和unordered_map<int, lsit<node*>::iterator>。
善用iterator,它是个好东西。
class node{
public:
int key;
int val;
node * next;
node * prev;
node(int k, int v): key(k), val(v), next(NULL), prev(NULL){}
};
class myList{
public:
int size;
node * head;
node * tail;
myList():size(0), head(NULL), tail(NULL){}
void remove_tail(){
node * p = tail;
remove(p);
delete p;
}
node * get_tail(){
return tail;
}
void remove(node * p){
if(p != head){
p->prev->next = p->next;
}
if(p != tail){
p->next->prev = p->prev;
}
if(p == head){
head = p->next;
if(head != NULL){
head->prev = NULL;
}
}
if(p == tail){
tail = p->prev;
if(tail != NULL){
tail->next = NULL;
}
}
size--;
}
void push_front(node * p){
if(size == 0){
head = tail = p;
p->next = p->prev = NULL;
size++;
}
else{
p->next = head;
head->prev = p;
p->prev = NULL;
head = p;
size++;
}
}
};
class LRUCache{
public:
unordered_map <int, node *> hashMap;
myList* l = new myList();
int capacity;
LRUCache(int capacity) {
this->capacity = capacity;
}
int get(int key) {
if(hashMap.find(key) != hashMap.end()){//found
node * p = hashMap[key];
l->remove(p);
l->push_front(p);
return p->val;
}
else{//not found
return-1;
}
}
void set(int key, int value) {
if(get(key) != -1){//exist
hashMap[key]->val = value;
}
else{//not exist
node * p = new node(key, value);
if(l->size < capacity){//not full
l->push_front(p);
}
else{//full
int tailKey = l->get_tail()->key;
l->remove_tail();
hashMap.erase(tailKey);
l->push_front(p);
}
hashMap[key] = p;
}
}
};
