Range Sum Query 2D – Immutable
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by (row1, col1), (row2, col2).
Example:
Given matrix = [ [3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5] ] sumRegion(2, 1, 4, 3) -> 8 sumRegion(1, 1, 2, 2) -> 11 sumRegion(1, 2, 2, 4) -> 12Note:
- You may assume that the matrix does not change.
- There are many calls to sumRegion function.
- You may assume that row1 ≤ row2 and col1 ≤ col2.
Dynamic programming.
dp[i][j] stores the sum of elements in the rectangle area between(0,0) and (i,j)
class NumMatrix {
public:
vector<vector<long>> dp;
NumMatrix(vector<vector<int>> &matrix) {
if(matrix.size() == 0 || matrix[0].size() == 0) return ;
dp = vector<vector<long>> (matrix.size(), vector<long>(matrix[0].size(), 0));
dp[0][0] = matrix[0][0];
for(int i = 0; i < matrix.size(); i++){
for(int j = 0; j < matrix[0].size(); j++){
if(j == 0 && i == 0) continue;
else if(j == 0){
dp[i][j] = dp[i - 1][j] + matrix[i][j];
}
else if(i == 0){
dp[i][j] = dp[i][j - 1] + matrix[i][j];
}
else{
dp[i][j] = dp[i][j - 1] + dp[i - 1][j] - dp[i - 1][j - 1] + matrix[i][j];
}
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
int sum = 0;
// index boundary check
if(row1 == 0 && col1 == 0) sum = (int)dp[row2][col2];
else if(row1 == 0){
sum = (int)(dp[row2][col2] - dp[row2][col1 - 1]);
}else if(col1 == 0){
sum = (int)(dp[row2][col2] - dp[row1 - 1][col2]);
}else{
sum = (int)(dp[row2][col2] + dp[row1 - 1][col1 - 1] - dp[row2][col1 - 1] - dp[row1 - 1][col2]);
}
return sum;
}
};
// Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.sumRegion(1, 2, 3, 4);