Unique Paths II
Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as
1and0respectively in the grid.For example,
There is one obstacle in the middle of a 3×3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]The total number of unique paths is
2.Note: m and n will be at most 100.
和Unique Paths I很像。
转移方程变一下即可,如果obstacleGrid[i][j] == 1 ,map[i][j] = 0;
否则 map[i][j] = map[i-1][j] + map[i][j-1];
这里需要注意数组的初始化。
int map[2][2] = {0};不能将所有元素初始化,需要一个循环来初始化。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
if(obstacleGrid.empty()) return 0;
int height = obstacleGrid.size();
int length = obstacleGrid[0].size();
if(height == 0 || length == 0) return 0;
int map[height + 1][length + 1];
for(int i = 0; i < height + 1; i++){
for(int j = 0; j < length + 1; j++){
map[i][j] = 0;
}
}
for(int i = 1; i <= height; i++){
for(int j = 1; j <= length; j++){
if(obstacleGrid[i - 1][j - 1] == 1){
map[i][j] = 0;
}
else if(i == 1 && j == 1){
map[i][j] = 1;
}
else{
map[i][j] = map[i-1][j] + map[i][j-1];
}
}
}
return map[height][length];
}
};
